SAE Government and Industry Meeting Frontal Crash Protection

Real World Experience with Event Data Recorders

May 14, 2001

Augustus "Chip" Chidester
John A. Hinch

National Highway Traffic Safety Administration

Event Data Recording Topics

- EDR Working Group
- **EDR Field Data Collection**
- Future EDR Programs at NHTSA

EDR Working Group

- In early 1998, the Motor Vehicle Safety Research Advisory Committee (MVSRAC) Crashworthiness Subcommittee organized a working group to study EDRs.
- The main objective of the Working Group was to facilitate the collection and utilization of collision avoidance and crashworthiness data from on-board Event Data Recorders.

EDR Working Group

- To facilitate achieving this objective, the WG developed a set of sub-objectives, which include:
 - 1) status of EDR technology;
 - 2) data elements;
 - 3) data retrieval;
 - 4) data collection and storage;
 - 5) permanent record;
 - 6) privacy and legal issues;
 - 7) customers and uses of EDR data; and
 - 8) demonstration of EDR technology.

EDR Working Group

- The working group has met routinely, about three times per year, through the end of 2000.
- The working group is currently documenting their findings in a technical report that will be published in 2001.
 - All materials provided to the working group, along with the final approved minutes from each meeting, were placed in the Department of Transportation's Document Management System (DMS), docket NHTSA-99-5218.
 - These dockets are viewable and printable from the DMS, which can be located using an Internet browser at http://dms.dot.gov. (Search for docket 5218.)

- NHTSA currently collects EDR crash data in three major vehicle crash programs:
 - NASS-CDS A national statistically sampled data base, currently collecting data on about 4,000 crashes each year at 24 locations around the U.S.;
 - SCI A collection of targeted crash investigations looking at emerging safety issues, and;
 - CIREN A system of crash investigations conducted at hospitals, collecting about 400 cases per year.

EDR Download Success by Manufacturer, Crash Program, and Downloading Agency

Program	GM (read by NHTSA/EISS)			FORD	Totals		
	Att.	Comp.	Att.	Comp.	Att	Comp.	
SCI	7[18]	7[18]	28	28	53	53	
NASS	41[1]	34[1]	6	5	48	41	
Totals	48[19]	41[19]	34	33	101	94	

Methodology:

- GM:
 - Sensing and Diagnostic Module (SDM):
 - Primary function is to control the deployment of the occupant protection systems.
 - This system records a longitudinal acceleration.
 - Data related to the driver and passenger air bag deployment including:
 - 5 seconds of pre-crash data
 - vehicle speed, engine RPM, engine throttle opening, and brake application
 - Up to 300 milliseconds of crash pulse
 - Driver Seat belt use

SIR Warning Lamp Status	OFF
Driver's Belt	BUCKLED
Passenger Front-Air Bag	OFF
Ignition Cycles At Deployment	1022

PRE-CRASH DATA		Electronic Data Validity Check Status = VALID						
Seconds Before AE	Vehicle Speed (MPH)	Engine Speed (RPM)	Percent Throttle	Brake Switch Statu				
-5	48	2048	31	OFF				
-4	51	2112	31	~ OFF				
-3	52	2176	36	OFF				
-2	55	2240	36	OFF				
-1	55	2304	0	OFF				

DEPLOYMENT DATA

Milliseconds After AE Velocity Change (MPH)	10	20	30	40	50	60	70	80	90	100	110
Velocity Change (MPH)	-0.50	-4.67	-9.28	-15.65	-25.52	-32.32	-36.05	-37.59	-43.07	-49.00	-53.61

Time Between Deployment and Near Deployment Events (msec)	N/A

Methodology:

- Ford:
 - Restraint Control Module (RCM)
 - Primary function is to control the deployment of the occupant protection systems.
 - This system records longitudinal and lateral acceleration.
 - Data related to the driver and passenger air bag deployment including:
 - 80 milliseconds of crash pulse
 - Deployment strategy of the dual-stage air bag system
 - Seat belt use
 - Pre-tensioner operation
 - Driver seat position

EDR Control Module Data

Data Validity Check: Valid	EDR Model Version:	141	
Left (Driver) Side Bag Deployment Time	(ms):	Not Deployed	
Right (Passenger) Side Bag Deployment		Not Deployed	
Passenger Airbag Switch Position During	g Event:	N/A	
Diagnostic Codes Active When Event Oc		0	

Algorithm Times	Actual initiation depends on restraint system status (below).	ms
Time From Algorithm	Wakeup to Pretensioner:	8
Time From Algorithm Wakeup to First Stage - Unbelted:		10
Time From Algorithm	Wakeup to First Stage - Belted:	21
Time From Algorithm	Wakeup to Second Stage:	0

Restraint System Status

Driver Seat Belt Buckle:	Engaged
Passenger Seat Belt Buckle:	Not Engaged
Driver Seat Track In Forward Position:	No
Passenger Seat Weight Switch Position:	N/A

Deployment Initiation Attempt Times	Driver	Passenger
Time From Algorithm Wakeup to Pretensioner Deployment Attempt:	8	Unbelted
Time From Algorithm Wakeup to First Stage Deployment Attempt:	21	21
Time From Algorithm Wakeup to Second Stage Deployment Attempt:	Disposal	Disposal

Longitudinal Cumulative Delta-V

Time (ms)	0	10	20	30	40	50	60	70	78
Delta-V (MPH)	-0.4	-2.3	-4.3	-5.9	-7.4	-10.3	-14.1	-16.2	-19.5

30	40	50	60	70	78
0.7	1.4	1.5	1.7	1.1	1.6

EDR Program at NHTSA: What We Have Learned

- Some EDR output data may be lost or questionable.
 - Due to loss of power loss and sensor problems.
- Enhancement of the crash reconstruction.
 - Crash pulse, time to deployment, restraint usage, etc
- Improvement in data quality.
 - Used for validation of data.
 - Improves data completion.

EDR Program at NHTSA: What We Have Learned

- The most effective method to observe and/or measure the performance of Advanced Occupant Protection Systems is through the EDR data.
 - Deployment logic

Other Activities with AOPSS Coordination with Industry

- Working with Crash Investigators,
 Engineers and Designers
 - Case-by-Case Evaluation on
 - EDR Readouts
 - Real World Performance of the Advanced Occupant Protection System Technologies

FUTURE: EDR Program at NHTSA

- Future
 - NHTSA will continue to Research
 - Standardized EDR data set
 - Program to supply EDR readers and Training to law enforcement.
 - Add EDR output to Police Crash Reports.
 - Severity Indicator in FARS.

Questions

